首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   580篇
  免费   33篇
  国内免费   14篇
化学   362篇
力学   55篇
数学   88篇
物理学   122篇
  2024年   2篇
  2023年   1篇
  2022年   5篇
  2021年   28篇
  2020年   29篇
  2019年   31篇
  2018年   29篇
  2017年   35篇
  2016年   42篇
  2015年   23篇
  2014年   44篇
  2013年   75篇
  2012年   65篇
  2011年   54篇
  2010年   42篇
  2009年   26篇
  2008年   15篇
  2007年   21篇
  2006年   10篇
  2005年   6篇
  2004年   2篇
  2003年   3篇
  2002年   1篇
  2001年   4篇
  2000年   1篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1995年   2篇
  1993年   2篇
  1991年   1篇
  1988年   1篇
  1987年   1篇
  1985年   2篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1980年   3篇
  1979年   2篇
  1977年   5篇
  1976年   2篇
  1975年   3篇
  1974年   2篇
  1972年   1篇
排序方式: 共有627条查询结果,搜索用时 125 毫秒
21.
Novel functionalized graphene adsorbent was prepared and characterized using different techniques. The prepared adsorbent was applied for the removal of cadmium ions from aqueous solution. A response surface methodology was used to evaluate the simple and combined effects of the various parameters, including adsorbent dosage, pH, and initial concentration. Under the optimal conditions, the cadmium removal performance of 70% was achieved. A good agreement between experimental and predicted data in this study was observed. The experimental results revealed of cadmium adsorption with high linearity follow Langmuir isotherm model with maximum adsorption capacity of 502 mg g?1, and the adsorption data fitted well into pseudo‐second order model. Thermodynamic studies showed that adsorption process has exothermic and spontaneous nature. The recommended optimum conditions are: cadmium concentration of 970 mg L?1, adsorbent dosage of 1 g L?1, pH of 6.18, and T = 25 °C. The magnetic recovery of the adsorbent was performed using a magnetic surfactant to form a noncovalent magnetic functionalized graphene. After magnetic recovery of the adsorbent both components (adsorbent and magnetic surfactant) were recycled by tuning the surface charges through changing the pH of the solution. Desorption behavior studied using HNO3 solution indicated that the adsorbent had the potential for reusability.  相似文献   
22.
In this study, Co3O4 nanocatalysts were constructed in environmentally appropriate conditions using controlled, effective, and facile microwave method. The final nanostructures were characterized by SEM, XRD, and TEM analyses. The products had a small size distribution, homogeneous morphology, and crystallographic structures associated with the formation of Co3O4 nanostructures. Moreover, EDS mapping analysis confirmed the existence of Co and O elements in the final structure, and the magnetic properties of the samples were investigated by VSM. The application of this nanostructure in a catalytic process was further examined, and the results suggested that it could be used as a novel candidate for the synthesis of arylidene barbituric and Meldrum,s acid through Knoevenagel condensation of aldehydes by barbituric and Meldrum,s acid in aqueous media. The high yield of these nanocatalysts would be justified by the nature of the nanostructure as well as the experimental procedure developed in this study, which affected the physicochemical features of the products.  相似文献   
23.
24.
Magnesium hydrogen sulfate powder was found to catalyze stereoselective conversion of dialkyl 2-(imido-N-yl)-3-(triphenylphosphorany-lidene)butanedioates to electron-poor (Z)-N-vinylimides in solvent-free conditions at 95°C 1 h in high conversions. Microwave also was found to catalyze the same reactions in the presence of magnesium hydrogen sulfate powder in solvent-free conditions in 3 min.  相似文献   
25.
Metal-free electrocatalysts for oxygen reduction reaction (ORR) are key to the development of efficient, durable, and low-cost alternatives to noble-metal-based electrocatalysts in fuel cell cathodes. In recent years, many efforts are directed to the metal-free catalyst based on heteroatom-doped graphene. In this work, we demonstrate that the graphene surface can be converted into the catalyst for the oxygen reduction by chemical functionalization. In this context, we first synthesized malononitrile-functionalized graphene oxide. Amidoximation of nitrile group and reduction in graphene oxide were then carried out by hydroxylamine in one step. The electrochemical behavior of functionalized graphene-modified electrode for the reduction in oxygen was studied. The results showed that the electrocatalyst fabricated by this method exhibited striking catalytic activities in alkaline solution. In alkaline solution, this catalyst showed a competitive activity to the commercial Pt catalyst via four-electron transfer pathway with better ORR selectivity and stability. In addition, this metal-free electrocatalyst exhibited tolerance to methanol crossover effect. Based on its outstanding performance, this functionalized graphene electrocatalyst showed the promising prospect of a metal-free catalyst for fuel cell with much lower cost than currently used Pt/C catalyst.  相似文献   
26.
The polydimethylsiloxane (PDMS) mixed matrix membrane with dispersed phase of nanozeolite silicalite-1 has been synthesized on polyethersulphone (PES) as a support, and its performance in the gas separation of xenon and krypton has been studied. For this purpose, nanozeolite silicalite-1 is synthesized by the hydrothermal clear solution method and is characterized by XRD and SEM analysis. In this research, the separation performance of MMM has also been compared with the polymeric PDMS membrane. Furthermore, the effect of feed pressure and loading percentage of nanozeolite in the polymeric matrix are evaluated. The results indicate that the addition of nanozeolite to the polymeric matrix improves its separation performance, and that the changes of the feed pressure have no major effect. The average permeability of the krypton and xenon gases through the PDMS polymeric membrane is calculated as 1.25 × 10?9 and 1.78 × 10?9 cm mol/(cm2 s kPa), respectively, while by adding only 5 wt% of nanosilicalite-1 to the polymeric matrix of the membrane, this amount increased to 1.82 × 10?9 and 8.07 × 10?9 cm mol/(cm2 s kPa), respectively. In addition, the presence of nanosilicalite-1 as the filler leads to an increase in the selectivity of xenon to krypton up to 4.38.  相似文献   
27.
Abstract

Selenourea reacts with dialkyl acetylenedicarboxylates in acetone to form 1:1 adducts, which undergo a cyclization reaction to produce alkyl Z-2-(2-amino-4-oxo-1,3-selenazol-5(4H)-yliden) acetates in fairly good yields. The reaction is completely stereoselective.  相似文献   
28.

Tiourea reacts with dialkyl acetylenedicarboxylates in solventless conditions to form 1:1 adducts, which undergo a cyclization reaction to produce alkyl Z-2-(2-amino-4-oxo-1,3-thiazol-5(4H)-yliden)acetates in fairly good yields. The stereochemistry of the ethyl Z-2-(2-amino-4-oxo-1,3-thiazol-5(4H)-yliden)acetate was established by the use of X-ray single crystal structure analysis. The reaction is completely stereoselective.  相似文献   
29.
Oxazolopyrimidine compounds 2(a–c) and 3(a–e) were synthesized by a simple one-pot condensation reaction of the pyrimidine derivative 1 with 1,2-dibromoethane and 2-bromopropanoic acid, respectively. In a similar way the oxazepinopyrimidine compounds 4(a–b) were synthesized by reaction of 1 and 1,4-dichlorobutane in dioxane under reflux condition. The yields of products following recrystallization were of the order of 55–85%.  相似文献   
30.
Chemical functionalization of C60 fullerene with one to six carbene (CH2) molecule(s) has been investigated using density functional theory. We have found that the reaction is regioselective so that a CH2 molecule prefers to be adsorbed atop a C–C bond which is shared between two hexagonal rings of the C60, releasing energy of ?3.95 eV. Singly occupied molecular orbital (SOMO) of the CH2 interacts with LUMO of the C60 via a [2 + 1] cycloaddition reaction. Energy of the reaction and work function of the system are decreased by increasing the number of adsorbed CH2 molecules. The HOMO/LUMO energy gap of C60 is slightly changed and the electron emission from its surface is facilitated upon the functionalization.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号